商铺名称:浙江五岳不锈钢有限公司
联系人:李方()
联系手机:
固定电话:
企业邮箱:626565229@qq.com
联系地址:浙江省温州市龙湾区天中路度山工业区
邮编:325024
联系我时,请说是在万物包装网上看到的,谢谢!
【不锈钢焊管】347不锈钢焊管 不锈钢焊管耐腐蚀 量大货足 送货到厂
不锈钢焊管,简称焊管,常用钢材或钢带经过机组和模具卷曲成型后焊接制成的钢管。焊接钢管生产工艺简单,生产效率高,品种规格多,设备投资少,但一般强度低于无缝钢管。
浙江五岳不锈钢有限公司专业生产304、316、316L、321、310S材质:大口径不锈钢管件(18*2-630*8)、不锈钢弯头、卫生级管件、不锈钢翻边、
异径大小头、不锈钢法兰等非标薄壁、厚壁不锈钢产品,拥有工业级、卫生级管件两大分厂,长期现货充足价格优势,可根据客户需求加工各种非标产品,
包括AB系列、长半径和短半径,生产标准有ASTM B16.9/B16.5,GB/T12459,SH3408、SH3409, DIN,JIS等,配有德国WAS进口便携式光谱仪、
TH110硬度仪,TT100测厚仪,日本生产口径壁厚仪等先进检测设备;广泛应用于石油、化工、电力、机械、啤酒、饮料、精细化工机械领域。
不锈钢管件,不锈钢弯头,卫生级阀门,卫生级管件,卫生级不锈钢管
(一)一般物理性能
和其他材料一样,物理性能主要包括以下3个方面:熔点、比热容、导热系数和线膨胀系数等热力学性能,电阻率、电导率和磁导率等电磁学性能,以及杨氏弹性模量、刚性系数等力学性能。这些性能一般都被认为是不锈钢材料的固有特性,但是也会受到诸如温度、加工程度和磁场强度的影响。通常情况下不锈钢与纯铁相比导热系数低、电阻大,而线膨胀系数和导磁率等性能则依不锈钢本身的结晶结构而异。
表4-1-表4-5中列出了马氏体型不锈钢、铁素体型不锈钢、奥氏体型不锈钢、沉淀硬化型不锈钢和双相不锈钢主要牌号的物理性能。如密度、熔点、比热容、导热系数、线膨胀系数、电阻率、磁导率和纵向弹性系数等参数。
(二)物理性能与温度的相关性
1.比热容
随着温度的变化比热容会发生变化,但在温度变化的过程中金属组织中一旦发生相变或沉淀,那么比热容将发生显著的变化。
2.导热系
在600℃以下,各种不锈钢的导热系数基本在10-30W/(m·℃)范围内,随着温度的提高导热系数有增加趋势。在100℃时,不锈钢导热系数由大至小的顺序为1Cr17、00Cr12、2Cr25N、0Cr18Ni11Ti、0Cr18Ni9、0Cr17Ni12Mo2、2Cr25Ni20.500℃时导热系数由大至小有顺序为1Cr13、1Cr17、2Cr25N、0Cr17Ni12Mo2、0Cr18Ni9Ti、和2Cr25Ni20。奥氏体型不锈钢的导热系数较其他不锈钢略低,与普通碳素钢相比,100℃时奥氏体型不锈钢的导热系数约为其1/4。
3.线膨胀系数
在100-900℃范围内,各类不锈钢主要牌号的线膨胀系数基本在10的负6次幂至20的负6次幂℃负1,且随着温度的升高呈增加趋势。对于沉淀硬化型不锈钢,线膨胀系数的大小由时效处理温度来决定。
4.电阻率
在0-900℃,各类不锈钢主要牌号的比电阻的大小基本在70*10的负6次幂至130*10的负6次幂Ωm,且随着温度的增加有增加的趋势,当作为发热材料时,应选用电阻率低的材料。
5.磁导率
奥氏体型不锈钢的磁导率极小,因此也被称为非磁性材料,具有稳定奥氏体组织的钢,如0Cr20Ni10、0Cr25Ni20等,即使对其进行大于80%的大变形量加工也不会带磁性。另外高碳、高氮、高锰奥氏体型不锈钢,如1Cr17Mn6Ni5N、1Cr18Mn8Ni5N系列以及高锰奥氏体型不锈钢等,在大压下量加工条件会发生ε相相变,因此保持非磁性。在居里点以上的高温下,即使是强磁性材料也会丧失磁性。但有些奥氏体型不锈钢如1Cr17Ni7、0Cr18Ni9,因为其组织为亚稳定奥氏体组织,因而在进行大压下量冷加工或进行低温加工时会发生马氏体相变,本身将具有磁性且磁导率也会提高。
6.弹性模量
室温下铁素体型不锈钢的纵向弹性模量为200KN/mm的平方,奥氏体型不锈钢的纵向弹性模量为193KN/mm的平方,略低于碳素结构钢。随着温度的升高纵向弹性模量减小,泊松比增加,横向弹性模量(刚度)则显著下降。纵向弹性模量将对加工硬化和组织集合产生影响。
7.密度
含铬量高的铁素体型不锈钢密度小,含镍量高和鴚锰量高的奥氏体型不锈钢的密度大。在室温下由于晶格间距的加大密度变小。
一)成形性能
不锈钢的成形性能因钢种的不同,即结晶结构的不同而有很大的差异。如铁素体型不锈钢和奥氏体型不锈钢和成形性能由于前者的晶体结构是体心立方,而后者的晶体结构是面心立方而有显著的差异。
铁素体不锈钢的凸缘成形性能与n值(加工硬化指数)有关,深冲加工性能与r值(塑性应变化)有关。其中r值由不同的生产工艺下的不同的组织集合来决定。采取一些措施来显著减少固溶碳和固溶氮,可大大改善r值并使深冲性能得到大幅度的提高。
奥氏体型不锈钢一般来说n值较大,在进行加工的过程中由于塑性诱发相变而生成马氏体,因而有较大的n值和延伸率,可进行深冲加工和凸缘成形。有一部分奥氏体型不锈钢在深冲加工后,经一段时间会产生与冲压方向一致的纵向裂纹,即所谓的“时效裂纹”。为此采用高镍,低氮和低碳的奥氏体型不锈钢可避免该缺陷的发生。
奥氏体型不锈钢不所含的镍可明显降低钢的冷加工硬化倾向,其原因是可使奥氏体的稳定性增加,减少或消除了冷加工过程中的马氏体转变,降低厂冷加工硬化速率,强度降低和塑性提高。
在双相不锈钢中增加镍的含量可降低马氏体转变温度,从而改善了冷加工变形性能。
在评价不锈钢钢板的成形加工性时,一般以综合成形性能来标志。该综合成形性能是由标志断裂极限的抗断裂性(深冲性能、凸缘成形性能、边部延伸性能、弯曲性能),标志成形模具和材料的配合性的抗起起皱性,标志卸载后固定形状的形状固定性等组成。
(1)高温裂纹:在这里所说的高温裂纹是指与焊接有关的裂纹。高温裂纹可大致分为凝固裂纹、显微裂纹、HAZ(热影响区)的裂纹和再加热裂纹等。
(2)低温裂纹:在马氏体型不锈钢和部分具有马氏体组织的铁素体型不锈钢中有时会发生低温裂纹。由于其产生的主要原因是氢扩散、焊接接头的约束程度以及其中的硬化组织,所以解决方法主要是在焊接过程中減少氢的扩散,适宜地进行预热和焊后热处理以及减轻约束程度。
(3)焊接接头的韧性:在奥氏体型不锈钢中为减轻高温裂纹性,在成分设计上通常使其中残存有5%-10%的铁素体。但这些铁素体的存在导致了低温韧性的下降。在双相不锈钢进行焊接时,焊接接头区域的奥氏体量减少而对韧性产生影响。另外随着其中铁素体的增加,其韧性值的显著下降的趋势。
己证实高纯铁素体型不锈钢的焊接接头的韧性显著下降的原因是由于混入了碳、氮和氧的缘故。其中一些钢的焊接接头中的氧含量增加后生成了氧化物型夹杂,这些夹杂物成为裂纹发生源或裂纹传播的途径使得韧性下降。而有一些钢则是由于在保护气体中混入了空气,其中的氮含量增加在基体解理面{100}面上产生板条状Cr2N,基体变硬而使得韧性下降。
(4)б相脆化:奥氏体型不锈钢、铁素体型不锈钢和双相不锈钢易发生б相脆化。由于组织中析出了百分之几的相,韧性显著下降。б相一般是在600-900℃范围内析出,尤其在750℃左右最易析出,作为防止б相产生的预防性措施,奥氏体型不锈钢中应尽量减少铁素体的含量。
(5)475℃脆化:在475℃附近(370-540℃)长时间保温时,使Fe-Cr合金分解为低铬浓度的a固溶体和高铬浓度的a’固溶体中铬浓度大于75%时形变由滑移变形转变为孪晶变形,从而发生475℃脆化。